

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-IPC/12/7448 Dated 18 Sep 2012

Voltage Reference, SOT23 Cu Wire Qualification in Carsem Malaysia

Table 1. Change Implementation Schedule

g		
Forecasted implementation date for change	23-Nov-2012	
Forecasted availability date of samples for customer	11-Sep-2012	
Forecasted date for STMicroelectronics change Qualification Plan results availability	11-Sep-2012	
Estimated date of changed product first shipment	18-Dec-2012	

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	see attached list
Type of change	Package assembly material change
Reason for change	to improve service to ST Customers and standardize processes
Description of the change	Progressing on the activities related to quality improvement and along the plan of rationalizing the manufacturing processes, ST is glad to extend the implementation of CU Wire for the SOT23 package in the Carsem subcontractor (Malaysia). For the complete list of the part numbers affected by the change, please refer to the attached Products list. Samples of TS2431AILT and TS431AILT are available right now for immediate customer qual-ification, while the availability of other samples will be upon request.
Change Product Identification	QA number
Manufacturing Location(s)	

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN IPD-IPC/12/7448
Please sign and return to STMicroelectronics	Sales Office Dated 18 Sep 2012
□ Qualification Plan Denied	Name:
□ Qualification Plan Approved	Title:
	Company:
□ Change Denied	Date:
□ Change Approved	Signature:
Remark	
ı	

47/.

DOCUMENT APPROVAL

Name	Function
Riviera, Antonio	Marketing Manager
Naso, Lorenzo	Product Manager
Motta, Antonino	Q.A. Manager

A7/.

WHAT:

Progressing on the activities related to quality improvement and along the plan of rationalizing the manufacturing processes, ST is glad to extend the implementation of CU Wire for the SOT23 package in the Carsem subcontractor (Malaysia).

For the complete list of the part numbers affected by the change, please refer to the attached Products list.

Samples of TS2431AILT and TS431AILT are available right now for immediate customer qualification, while the availability of other samples will be upon request.

WHY:

This manufacturing change will improve service to ST Customers, standardize processes for the affected package.

HOW:

The qualification program mainly consists of reliability tests and comparative electrical characterization.

The related reliability report is annexed to this document.

The changes here reported do not affect the electrical, dimensional and thermal parameters of the products, keeping unchanged all information reported on the relevant datasheets.

WHEN:

Te implementation will be finalized within Q3

Marking and traceability:

Unless otherwise stated by customer specific requirement, the traceability of the parts assembled with the new material set will be ensured by the Q.A. number.

The changed here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all information reported on the relevant datasheets.

There is as well no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

In any case, first shipments may start earlier with customer's written agreement.

Linear Voltage Regulator & VRef

REL-6043-083W.12

Quality and Reliability

Reliability Report

CARSEM MALAYSIA SOT23 3L CU WIRE QUALIFICATION

T.V.: TS2431AILT - Line: U782

General Information

Product Line U782

Product Description Programmable shunt voltage

reference

P/N TS2431AILT

Product Group IPD

Product division Industrial & Power

Package Conversion SOT23 3L

Silicon Process technology BCD 2 - 2S

	Locations

Wafer fab SINGAPORE Ang Mo Kio

Assembly plant CARSEM M

Reliability Lab IMS Catania Reliability Lab

Reliability assessment Pass

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.1	26-Mar-2012	9	Stefania Motta	Giovanni Presti	FINAL

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

Reliability Report

REL-6043-083W.12

Linear Voltage Regulator & VRef

Quality and Reliability

TABLE OF CONTENTS

1	1 APPLICABLE AND REFERENC	E DOCUMENTS	3
2	2 GLOSSARY		3
		ERVIEW	
	3.1 OBJECTIVES		3
	3.2 CONCLUSION		3
4	4 DEVICE CHARACTERISTICS		4
	4.1 DEVICE DESCRIPTION		4
	4.2 Construction note		4
5			
	5.1 Test vehicle	Į.	5
	5.2 TEST PLAN AND RESULTS SUI	1MARY	ô
6			
	6.1 DEVICE DETAILS		7
	6.2 Tests Description	(q

Linear Voltage Regulator & VRef

REL-6043W-083.12

Quality and Reliability

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Evaluation Process Change on SOT23 3L Cu wire qualification.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices be have correctly against environmental tests (no failure) until the final step @ 1000h. Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

Linear Voltage Regulator & VRef

REL-6043W-083.12

Quality and Reliability

4 DEVICE CHARACTERISTICS

4.1 Device description

The TS2431 is a programmable shunt voltage reference with guaranteed temperature stability over the entire temperature range of operation -40 to +105°C. The output voltage may be set to any value between 2.5 and 24 V with an external resistor bridge.

Available in a SOT23-3 surface mount package, the device can be implemented in applications where space-saving is of utmost importance.

4.2 Construction note

1	P/N TS2431AILT
Wafer/Die fab. information	1/N 102431AIL1
	Cinganaya Ang Ma Kia
Wafer fab manufacturing location	Singapore Ang Mo Kio
Technology	BCD 2 - 2S
Process family	BCD2S
Die finishing back side	Lapped Silicon
Die size	1420, 760 micron
Bond pad metallization layers	2
Passivation type	P-Vapox(Sio2) / Nitride (Sin)
Wafer Testing (EWS) information	
Electrical testing manufacturing location	Ang Mo Kio EWS
Tester	ASL1K
Test program	TU782_1_0100.nx4
Assembly information	
Assembly site	Carsem M
Package description	SOT 23 3 LDS
Molding compound	Molding Compound Hitachi CEL82
Frame material	HDLF 3SOT23(438638) Copper AG
Die attach process	GLUE
Die attach material	QMI519 EPOXY
Die pad size	4X38MILS
Wire bonding process	Thermosonic
Wires bonding materials/diameters	1.0mil Cu wire
Final testing information	
Testing location	Carsem S
Tester	ASL1K
Test program	U782_2.nx4

Linear Voltage Regulator & VRef

REL-6043W-083.12

Quality and Reliability

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Package	Product Line	Comments
1		ENG14201			I°lot AVG WB Parameters
2		ENG14204			2°lot AVG WB Parameters
3	6133N2H	ENG14205	SOT 23 3L	U78201	3°lot AVG WB Parameters
4		ENG14202			High WB Parameters
5		ENG14203			Low WB Parameters

Linear Voltage Regulator & VRef

REL-6043W-083.12

Quality and Reliability

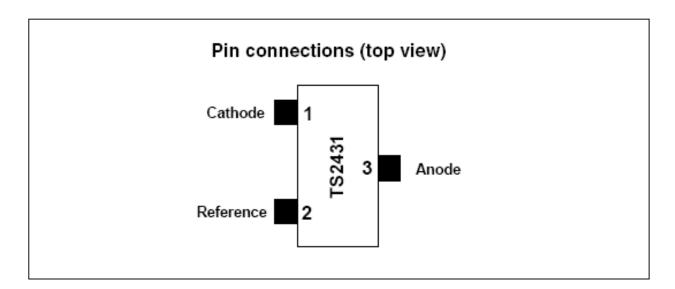
5.2 Test plan and results summary

P/N TS2431AILT

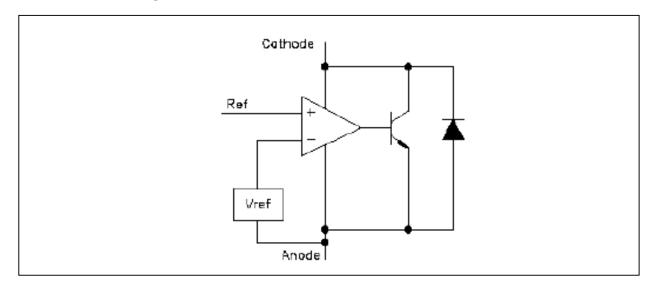
						Failure/SS					
Test	PC	Std ref.	Conditions		Steps	Lot 1 1°QUAL LOT	Lot 2 2°QUAL LOT	Lot 3 3°QUAL LOT	Lot 4 LOT HH	Lot 5 LOT LL	note
Die Orie	nted	Tests		-				-			
					168 H	0/45	0/45	0/45	0/45	0/45	
HTS	N	JESD22 A-103	Tj = 150℃	45	500 H	0/45	0/45	0/45	0/45	0/45	
		71 100			1000 H	0/45	0/45	0/45	0/45	0/45	
		IE ODOO			168 H	0/77					
HTOL	Ν	JESD22 A-108	Tj = 125℃, bias= +6.1V	77	500 H	0/77					
	X 199			1000 H	0/77						
Package	Orie	ented Tests		-			•	•	•		
PC		JESD22 A-113	Drying 24 H @ 125℃ Store 168 H @ Ta=85℃ Rh=85% Oven Reflow @ Tpeak=260℃ 3 times	231	Final	Pass	Pass	Pass	Pass	Pass	
AC	Υ	JESD22 A-102	Pa=2Atm / Ta=121℃	25	168 H	0/25	0/25	0/25	0/25	0/2 5	
		_			100 cy	0/25	0/25	0/25	0/25	0/25	
TC	Υ	JESD22 A-104	Ta = -65℃ to 150℃	25	300 cy	0/25	0/25	0/25	0/25	0/25	
		7. 101			500 cy	0/25	0/25	0/25	0/25	0/25	
		IEODOC			168 H	0/77					
THB	Υ	JESD22 A-101	Ta = 85℃, RH = 85%, bias= +5V	50	500 H	0/77					
		101			1000 H	0/77					

Reliability Report Page 6/9

REL-6043W-083.12


Linear Voltage Regulator & VRef

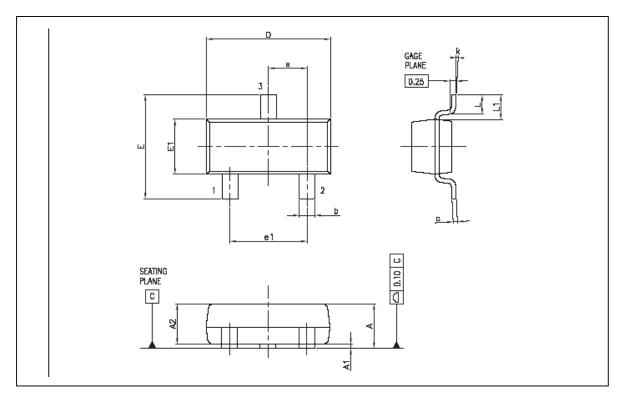
Quality and Reliability


6 ANNEXES

6.1 Device details

6.1.1 Pin connection

6.1.2 Block diagram



REL-6043W-083.12

Linear Voltage Regulator & VRef

Quality and Reliability

6.1.3 Package outline/Mechanical data

	Dimensions										
Dof		Millimeters									
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.					
Α	0.89		1.12	0.035		0.044					
A1	0.01		0.10	0.0004		0.004					
A2	0.88	0.95	1.02	0.035	0.037	0.040					
b	0.30		0.50	0.012		0.020					
С	0.08		0.20	0.003		0.008					
D	2.80	2.90	3.04	0.110	0.114	0.120					
E	2.10		2.64	0.083		0.104					
E1	1.20	1.30	1.40	0.047	0.051	0.055					
е		0.95			0.037						
e1		1.90			0.075						
L	0.40	0.50	0.60	0.016	0.020	0.024					
L1		0.54			0.021						
k	Od		8d								

Linear Voltage Regulator & VRef

REL-6043W-083.12

Quality and Reliability

6.2 Tests Description

the max. operative temperature. HTOL High Temperature Operative Life The device is stressed in static or dynamic configuration, approaching the operative max. Absolute ratings in terms of junction temperature and bias condition. The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption. The device is stored in saturated steam, at fixed and controlled conditions of pressure (Pressure Pot) The device is submitted to a typical temperature. The device is submitted to a typical temperature and bias condition. AC Auto Clave (Pressure Pot) The device is submitted to cycled temperature. The device is submitted to cycled temperature. The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere. The device is biased in static configuration minimizing its internal power dissipation, and terrol at controlled conditions of pressure for minimizing at some time and a conditions of pressure at the moisture accelerated way. The typical failure modes are related to, silic degradation, wire-bonds degradation, or faults. As stand-alone test: to investigate the moisture accelerated way. The typical failure modes are investigate on timpact on the subsequent reliability performance. The typical failure modes are proportic on the subsequent reliability performance. To investigate failure modes related to the thermo-mechanical stress induced by different thermal expansion of the mater interacting in the die-package system. Typ failure modes are linked to metal displacement interacting in the die-package system. Typ failure modes are linked to metal displacement interacting in the die-package moisture resistation, and with electrical field applied, both electrolytic of with electrical field applied.	Test name	Description	Purpose	
High Temperature Storage Life the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature. HTOL High Temperature Operative Life PC Preconditioning PC Preconditioning AC Auto Clave (Pressure Pot) TC Temperature Cycling The device is stored in saturated steam, at fixed and controlled conditions of pressure Cycling The device is submitted to cycled temperature. The device is submitted to cycled temperature excursions, between a hot and cold chamber in air atmosphere. The device is biased in static configuration minimizing its internal power dissipation, and temperature from the effects of bias conditions temperature on solid state devices over time simulates the devices of plane to temperature on solid state devices over time simulates the devices of plane temperature on solid state devices over time simulates the devices operation of temperature on solid state devices over time simulation is intemperature on solid state devices over time simulation is devices of plane the operative on solid	Die Oriented			
HTOL High Temperature Operative Life High Temperature Operative Life The device is stressed in static or dynamic configuration, approaching the operative max. Absolute ratings in terms of junction temperature and bias condition. Package Oriented PC Preconditioning The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption. The device is stored in saturated steam, at fixed and controlled conditions of pressure (Pressure Pot) TC Temperature Cycling The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere. The device is biased in static configuration minimizing its internal power dissipation, and attend at controlled properties of a patient of a controlled, and delarmination. The device is biased in static configuration minimizing its internal power dissipation, and attend at controlled, and delarmination. To evaluate the devices' operating condition in accelerated way. The typical failure modes are related to, silit degradation, wire-bonds degradation, overable devices' operating condition in accelerated way. The typical failure modes are related to, silit degradation, wire-bonds degradation, overable devices' operating condition in accelerated way. The typical failure modes are related to, silit degradation, wire-bonds degradation, overable devices over time simulates the devices' operating condition in accelerated way. The typical failure modes are related to, silit degradation, wire-bonds degradation, overable devices operating conditions accelerated way. As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability to to verify that the surface mounting stress doe not impact on the subsequent reliability performance. To investigate corrosion phenomena affect die or package materials, related to chemical stress induced by different thermal expansion of the mater die-package system. Typ failure modes are linked to metal dis	High Temperature	the max. temperature allowed by the package materials, sometimes higher than	by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-	
PC Preconditioning AC Auto Clave (Pressure Pot) TC Temperature Cycling The device is submitted to a typical temperature excursions, between a hot and cold chamber in air atmosphere. As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability test to verify that the surface mounting stress doe not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination. To investigate corrosion phenomena affect die or package materials, related to chem contamination and package hermeticity. To investigate failure modes related to thermo-mechanical stress induced by different thermal expansion of the mater interacting in the die-package system. Typ failure modes are linked to metal displacem dielectric cracking, molding composite delamination, wire-bonds failure, die-attraly degradation. The device is biased in static configuration minimizing its internal power dissipation, and the controlled conditions of pressure and tended at controlled moisture sensitivity level. As preconditioning before other reliability test to verify that the surface mounting stress doe not impact on the subsequent reliability performance. To investigate corrosion phenomena affect die or package materials, related to chem contamination and package hermeticity. To investigate failure modes related to thermo-mechanical stress induced by different thermal expansion of the material displacem dielectric cracking, molding composite delamination, wire-bonds failure, die-attraly degradation. The device is biased in static configuration minimizing its internal power dissipation, and the package moisture resistant to verify that the surface mounting stress doe to veri	High Temperature	configuration, approaching the operative max. Absolute ratings in terms of junction	accelerated way. The typical failure modes are related to, silic degradation, wire-bonds degradation, oxi	
PC Preconditioning AC Auto Clave (Pressure Pot) TC Temperature Cycling The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption. AC Auto Clave (Pressure Pot) TC Temperature Cycling The device is submitted to cycled temperature excursions, between a hot and cold chamber in air atmosphere. THE THB Temperature The device is biased in static configuration minimizing its internal power dissipation, and stored at expericelled as described in the profile and delamination. Sensitivity level. As preconditioning before other reliability test to verify that the surface mounting stress doe not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination. To investigate corrosion phenomena affect die or package materials, related to chem contamination and package hermeticity. To investigate failure modes related to thermo-mechanical stress induced by different thermal expansion of the mater interacting in the die-package system. Typ failure modes are linked to metal displacement dielectric cracking, molding composite delamination, wire-bonds failure, die-attraction in the subsequent reliability test to verify that the surface mounting stress doe not impact on the subsequent reliability test to verify that the surface mounting stress doe not impact on the subsequent reliability test to verify that the surface mounting stress doe not impact on the subsequent reliability performance. To investigate corrosion phenomena affect die or package materials, related to chem contamination and package hermeticity. To investigate realiure modes related to the more contamination and package hermeticity. To investigate failure modes are "pop corn" effect and delamination. To evaluate the package moisture resistant with electrical field applied, both electrolytic and the verification and package hermeticity. To one characterial to the verification and package hermeticity. To investigate failure mode	Package Oriented			
Auto Clave (Pressure Pot) TC Temperature Cycling THB Temperature The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of pressure die or package materials, related to chem contamination and package hermeticity. To investigate failure modes related to thermo-mechanical stress induced by different thermal expansion of the mater interacting in the die-package system. Typ failure modes are linked to metal displacement dielectric cracking, molding composite delamination, wire-bonds failure, die-attribute die package moisture resistation with electrical field applied, both electrolytic and teacher of ambient.		temperature profile used for surface mounting devices, after a controlled moisture	As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect	
The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere. The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere. The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient with electrical field applied, both electrolytic and with electrical field applied, both electrolytic and with electrical field applied, both electrolytic and controlled conditions of ambients.	Auto Clave	fixed and controlled conditions of pressure	die or package materials, related to chemical	
Temperature minimizing its internal power dissipation, and stored at controlled conditions of ambient with electrical field applied, both electrolytic and stored at controlled conditions of ambient	Temperature	temperature excursions, between a hot and a	different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach	
temperature and relative humidity.		minimizing its internal power dissipation, and stored at controlled conditions of ambient	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.	

REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

Reliability Report

Voltage References

CARSEM MALAYSIA SOT23 5L CU WIRE QUALIFICATION

T.V.: TS431AILT

Line S43101

Technology BICMOS 2

Packages: SOT23 5L

General Information

Product Line S43101

Product Description LOW VOLTAGE ADJUSTABLE

SHUNT REFERENCE

P/N TS431AILT

Product Group

IND.& POWER CONV

Product division Linear Voltage Regulators &

Vref

Packages SOT23 5L Silicon Process technology BICMOS 2 Wafer fab Ang Mo Kio

Assembly plant Carsem

Reliability Lab IMS Catania Reliability Lab

Locations

Reliability assessment Pass

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	20 June 2012	8	Angelo Basile	Giovanni Presti	Final report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

IMS (Industrial & Multisegment Sector)

IPD Group IPC Industrial Power Conversion

REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

TABLE OF CONTENTS

1	APPLICA	ABLE AND REFERENCE DOCUMENTS	3
2	GLOSSA	RY	3
		LITY EVALUATION OVERVIEW	
		JECTIVES	
	3.2 Con	NCLUSION	3
		VICE DESCRIPTION4	
		ESULTS SUMMARY	
	4.1 TES	ST VEHICLE	5
		ST PLAN AND RESULTS SUMMARY	
5		S	
	5.1 DEV	VICE DETAILS	ဝ
	5.2 TES	STS DESCRIPTION	8

REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Carsem Malaysia SOT23 5L Cu Wire Qualification

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure in the available steps). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation

The evaluation results are positive

REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

3.3 Device description

The TS431 is a low-voltage, three-terminal, programmable shunt voltage reference. The output voltage can be set to any value between Vref (1.24 V) and 6 V with two external resistors. The TS431 is able to operate at a lower voltage (1.24 V) and lower cathode current than the widely used TL431 and TL1431 shunt voltage reference. When driving an opt coupler, the TS431 is particularly useful for regulating 3.3 V switching power supplies

Construction note

	P/N	
	TS431AILT SOT23 5	
Water/Die fels information	15431AIL1 50123 5	
Wafer/Die fab. information		
Wafer fab manufacturing location	Carsem	
Technology	BICMOS 2	
Die finishing back side	Raw Silicon Back Grinding	
Die size	900 x1350 um	
Passivation type	P-Vapox(Sio2) / Nitride (Sin)	
Wafer Testing (EWS) information		
Electrical testing manufacturing		
location	Singapore Ang Mo Kio	
Tester	ASL1K	
Test program	Vref_S431_0100.nx4	
Assembly information		
Assembly site	Carsem	
Package description	SOT 23-5	
Molding compound	Hitachi CEL8240	
Frame material	Copper Ag Spot (frame code 4	
Die attach process	Glue	
Die attach material	QMI519 EPOXY	
Wire bonding process	Thermosonic Bonding	
Wires bonding materials/diameters	1.0mil Cu wire	
Lead finishing process	Electroplating	
Lead finishing/bump solder material	100% Pure Matter Tin	
Final testing information		
Testing location	Carsem	
Tester	ASL1K	
Test program	TS431_1.nx4	

REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

4 TESTS RESULTS SUMMARY

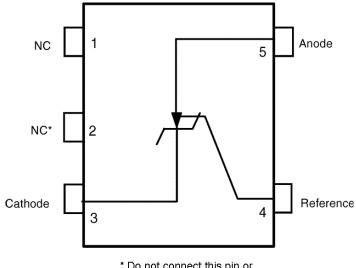
4.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Package	Product Line	Comments
1		15205			1 st Lot
2		15201			2 nd Lot
3	61396X9	15204	SOT23 5L	S43101	3 rd Lot
4		15203			Corner Lot HH
5		15202			Corner Lot LL

4.2 Test plan and results summary

P/N TI 431IDT

		P/N 1L4311						Failure/SS		
Test	PC	Std ref.	Conditions	SS	Steps	1 st Lot	2 nd Lot	3 rd Lot	Corner Lot HH	Corner Lot LL
Die Or	ient	ed Tests								
		IEOD00	T: 405%		168 H	0/77				
HTOL	Ν	JESD22 A-108	Tj = 125℃, BIAS=+5V		500 H	0/77				
		A-100	DIAG=+3V		1000 H	0/77				
		IECDOO			168 H	0/25	0/25	0/25	0/25	0/25
HTSL	Ν	JESD22 A-103	Ta = 150℃		500 H	0/25	0/25	0/25	0/25	0/25
		λ-105			1000 H	0/25	0/25	0/25	0/25	0/25
Packa	ge (Oriented Te	sts							
AC	Υ	JESD22	Pa=2Atm / Ta=121℃		96 H					
AC	I	A-102	ra=zAtiii/ Ta=121 G		168 H	0/25	0/25	0/25		
		JESD22 A-104	Ta = -65℃ to 150℃		100 cy	0/25	0/25	0/25	0/25	0/25
TC	Υ				200 cy	0/25	0/25	0/25	0/25	0/25
					500 cy	0/25	0/25	0/25	0/25	0/25
		IECDOO	T- 05%		168 H	0/25	0/25	0/25		
THB	Υ	JESD22 A-101	Ta = 85℃, RH=85%, BIAS =+3V		500 H	0/25	0/25	0/25		
			T(1=0570, DIAO =15V		1000 H	0/25	0/25	0/25		
Other '	Tes	ts								
			HBM	3	+/- 2KV	PASS				
		AEC	MM	3	+/- 0.3KV	PASS				
ESD	N	Q101-001, 002 and 005	CDM	3	+/-500V all pins+/- 750Vcorne r pins	PASS				
WBP	N	MIL-STD- 883-2011	Wire Bond Pull	10	Final	0/5	0/5			

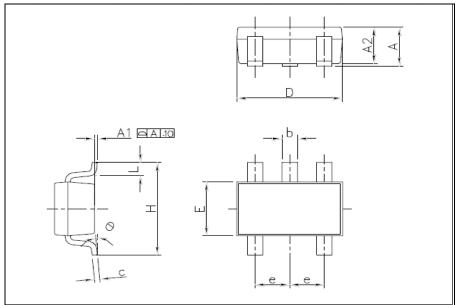

REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

5 ANNEXES

5.1 Device details

5.1.1 Pin connection


REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

5.1.2 Package outline/Mechanical data

Table 4. SOT23-5 package mechanical data

	Dimensions										
Ref.		Millimeters			Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.					
Α	0.90		1.45	0.035		0.057					
A1	0.00		0.15	0.00		0.006					
A2	0.90		1.30	0.035		0.051					
b	0.35		0.50	0.014		0.02					
С	0.09		0.20	0.003		0.008					
D	2.80		3.00	0.110		0.118					
Н	2.60		3.00	0.102		0.118					
E	1.50		1.75	0.059		0.069					
е		0.95			0.037						
e1		1.9			0.075						
L	0.35		0.55	0.014		0.022					

REL.6043-189W.12

Linear Voltage Regulators & Vref Quality and Reliability

5.2 Tests Description

Test name	Description	Purpose
Die Oriented	·	
HTOL High Temperature Operative Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	the max. temperature allowed by the	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress- voiding.
Package Oriented		
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other Tests		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
WBP Wire Bond Pull	This test may be applied to the wire-to-die bond, wire-to-substrate bond, or the wire-to-package lead bond inside the package of wire-connected microelectronic devices bonded by soldering, thermo-compression, ultrasonic, or related techniques.	The purpose of this test is to measure bond strengths, evaluate bond strength distributions, or determine compliance with specified bond strength requirements of the applicable acquisition document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

